

LARGE RAPIDITY GAP SURVIVAL PROBABILITIES

G. Pancheri
INFN Frascati National Laboratories

ISMD, Berkeley, August 8th, 2007

WHAT IS NEEDED TO CALCULATE THE SURVIVAL PROBABILITY FOR LARGE RAPIDITY GAPS

Vector boson Vector boson to Higgs or other VV state

Only very low-pt particle emission can take place

A(b,s) = probability to find partons which will not undergo hard collisions

CALCULATE PNO-INEL

$$\mathcal{P}_{\text{NO-INEL}}(B,S)$$

• Poisson distributed (independent) collisions $\Pi\{k,\bar{n}\} = \frac{\bar{n}^k e^{-\bar{n}}}{k!}$

$$\sum_{k} \Pi\{k, \bar{n}\} = 1 - e^{-\bar{n}}$$

In Eikonal representation

•
$$\sigma_{inel} = \int d^2\vec{b} [1 - e^{-n(b,s)}]$$

AVERAGE NUMBER OF COLLISIONS AT GIVEN ENERGY AND IMPACT PARAMETER

•
$$n(b,s) = n_{soft}(b,s) + n_{hard}(b,s)$$

$$\bullet n_{soft/hard}(b,s) = A_{BN}^{soft/hard}(b,s)\sigma_{soft/hard}(s)$$

b and s need not be factorized

MODEL FOR HARD AND SOFT INTERACTIONS

 Work with A. Achilli, A. Grau, R.M. Godbole, Y.N. Srivastava

Eikonal mini-jet model with soft gluon resummation

A. GRAU,
R.M.
GODBOLE
AND Y.N.
SRIVASTAVA
PHYS. REV.
D 72,
076001
(2005)

THE QUESTIONS ARE:

What makes the cross-section rise?

 What makes the cross-section rise within the limits imposed by the Froissart bound?

TWO MECHANISMS

 Rise is due to increasing number of gluons which undergo "hard|" collisions, namely PQCD calculable interactions

 Saturation of Froissart bound is due to increasing acollinearity of "hard" partons because of initial state energy dependent soft gluon emission

OUR MODEL IS BASED ON

- eikonal transformation which implies multiple scattering and requires impact parameter distributions inside scattering particles and basic scattering cross-sections
- 2. hard component of scattering responsible for the rise of the total cross-section
- soft gluon emission from scattering particles which softens the rise and gives b-distribution

1. EIKONAL TRANSFORMATION

$$\sigma_{total} = 2 \int d^2 \vec{b} [1 - e^{-\chi(b,s)}]$$

With $\Re \chi(b,s) pprox 0$ and $\Im \chi(b,s) = n(b,s)/2$

•
$$\sigma_{inel} = \int d^2 \vec{b} [1 - e^{-n(b,s)}]$$

•
$$\sigma_{total} = 2 \int d^2 \vec{b} [1 - e^{-n(b,s)/2}]$$

2. Hard component of scattering responsible for the rise of the total cross-section

JET CROSS-SECTIONS AT

Using current DGLAP evoluted PDF's:

GRV, MRST, CTEQ

$$\sigma_{\mathsf{jet}}^{AB}(s, p_{tmin}) =$$

$$\int_{p_{tmin}}^{\sqrt{s/2}} dp_t \int_{4p_t^2/s}^1 dx_1 \int_{4p_t^2/(x_1s)}^1 dx_2 \times$$

$$\sum_{i,j,k,l} f_{i|A}(x_1) f_{j|B}(x_2) \frac{d\widehat{\sigma}_{ij}^{kl}(\widehat{s})}{dp_t}.$$

2.

$\sigma_{hard} \equiv \sigma_{\mathsf{jet}}^{AB}(s, p_{tmin})$

8/8/07

3. SOFT GLUON EMISSION FROM SCATTERING PARTICLES WHICH SOFTENS THE RISE AND GIVES B-DISTRIBUTION

SOFTENING THE RISE

- Soft gluons change the parton collinearity
- Higher energy more emission

more acollinearity

SOFT GLUON EMISSION

According to our model, soft gluon emission down to zero momentum modes is responsible for the initial decrease in p p, as well as for the

transformation of the sharp rise due to the increase in gluon-gluon interactions

into a smooth behavior

3. SOFT GLUON EMISSION FROM SCATTERING PARTICLES WHICH SOFTENS THE RISE AND GIVES B-DISTRIBUTION

$$\begin{split} A_{BN}(b,s) &= N \int d^2 K_{\perp} \ e^{-iK_{\perp} \cdot b} \frac{d^2 P(K_{\perp})}{d^2 K_{\perp}} \\ &\frac{d^2 P(K_{\perp})}{d^2 K_{\perp}} = \frac{1}{(2\pi)^2} \int d^2 \vec{b} \ e^{iK_{\perp} \cdot b - h(b, q_{max})} \\ h(\vec{b}, q_{max}) &= \int_0^{q_{max}} d^3 \bar{n}(k) [1 - e^{-ik_t \cdot b}] \\ &\approx \int_0^{q_{max}} \frac{\alpha_s(k_t^2)}{8\pi} \frac{dk_t}{k_t} \log \frac{2q_{max}}{k_t} [1 - e^{-ik_t \cdot b}] \end{split}$$

WHAT ONE NEEDS TO CALCULATE A(B,S)

- Limits of integration
 for soft gluon factor ∫ dn_g(k)[1-e^{ikb}]
- upper limit $q_{max}^{(s)}$
- lower limit k=0 but then need to model

 $\int dk \, \alpha_s(k)$ down into the infrared region

OUR MODEL IN THE INFRARED

Singular but integrable

$$\alpha_s(k_t^2) = \frac{12\pi}{33 - 2N_f} \frac{p}{\log[1 + p(\frac{k_t^2}{\Lambda^2})^p]}$$

Singularity regulated by p < 1

$$q_{max}(s) = rac{\sqrt{s}}{2} rac{\sum_{i,j} \int rac{dx_1}{x_1} f_{i|A}(x_1) \int rac{dx_2}{x_2} f_{j|B}(x_2) \sqrt{x_1 x_2} \int_{z_{min}}^1 dz (1-z)}{\sum_{i,j} \int rac{dx_1}{x_1} f_{i|A}(x_1) \int rac{dx_2}{x_2} f_{j|B}(x_2) \int_{z_{min}}^1 (dz)}$$

HOW ABOUT N_{SOFT}?

$$n_{soft}(b,s) = A_{BN}^{soft}(b,s)\sigma_0(1+\epsilon \frac{2}{\sqrt{s}})$$

 $\epsilon=0,1$ depending upon the process being pp or pbarp

- •Parametrized with a constant σ_o
- ·With ptmin dependence through A(b,s)

FOR $P_{TMIN} = 1.15$ GeV and a chosen set of low energy parameters

Comparing with data and other models

GRV MRST

8/8/07

WITH HARD POMERON MODELS

Minijets+ Soft gluons

8/8/07

25

SURVIVAL PROBABILITY

Probability of not having an inelastic collision

$$P_{no-inel} = e^{-n(b,s)}$$

Can be used to calculate the survival probability of Large Rapidity Gaps for collisions at given b-value in a colorless exchange

SURVIVAL PROBABILITY

$$<|S|^{2}> = \int d^{2}\vec{b}A(\vec{b}, q_{max}^{soft})|S(\vec{b})|^{2}$$

we use the soft b-distribution

$$A(\vec{b}, q_{max}^{soft})$$

$$\int d^2\vec{b}A(\vec{b},q_{max}^{soft})=1$$

$$|S(\vec{b})|^2 = P_{no-inel}$$

COMPARING WITH OTHER MODELS

CONCLUSIONS

- We have built a model for the total crosssection which
 - Incorporates hard and soft gluon effects
 - Satisfies the limits from the Froissart bound
 - Can be used to study other minimum bias effects like Survival Probability of Large Rapidity Gaps
 - Easily extended to γ p and γ γ

1. EIKONAL

TRANSFORMATION

IMPLIES MULTIPLE

SCATTERING

